BGG resolutions, Koszulity, and stratifications: categorifying character formulae in  $U_q^{\iota}(\mathfrak{sl}_2)$  using the nil-Brauer algebra

Fan Zhou

Columbia University

2024

### Table of Contents

- Introduction
- 2 Main results
- 8 Key ideas
- 4 Reconstruction
- Nilcohomology
- 6 Koszul theory
- 7 Future work

• The split  $\iota$ -quantum group of rank 1  $U_q^{\iota}(\mathfrak{sl}_2)$  is a coideal subalgebra of  $U_q(\mathfrak{sl}_2)$ .

- The split  $\iota$ -quantum group of rank 1  $U_q^{\iota}(\mathfrak{sl}_2)$  is a coideal subalgebra of  $U_q(\mathfrak{sl}_2)$ .
- $\bullet$  This e.g. appears in  $\iota\text{-Schur}$  duality.

- The split  $\iota$ -quantum group of rank 1  $U_q^{\iota}(\mathfrak{sl}_2)$  is a coideal subalgebra of  $U_q(\mathfrak{sl}_2)$ .
- This e.g. appears in  $\iota$ -Schur duality.
- As an algebra, it is isomorphic to  $\mathbb{Q}(q)[B]$ , where  $B = F + qK^{-1}E$ .

- The split  $\iota$ -quantum group of rank 1  $U_q^{\iota}(\mathfrak{sl}_2)$  is a coideal subalgebra of  $U_q(\mathfrak{sl}_2)$ .
- This e.g. appears in  $\iota$ -Schur duality.
- As an algebra, it is isomorphic to  $\mathbb{Q}(q)[B]$ , where  $B = F + qK^{-1}E$ .
- We can consider  $U_q^{\iota}(\mathfrak{sl}_2)_t$ , satisfying  $\dot{U}_q^{\iota}(\mathfrak{sl}_2) = \dot{U}_q^{\iota}(\mathfrak{sl}_2)1_0 \oplus \dot{U}_q^{\iota}(\mathfrak{sl}_2)1_1$ .

- The split  $\iota$ -quantum group of rank 1  $U_q^{\iota}(\mathfrak{sl}_2)$  is a coideal subalgebra of  $U_q(\mathfrak{sl}_2)$ .
- This e.g. appears in  $\iota$ -Schur duality.
- As an algebra, it is isomorphic to  $\mathbb{Q}(q)[B]$ , where  $B = F + qK^{-1}E$ .
- We can consider  $U_q^{\iota}(\mathfrak{sl}_2)_t$ , satisfying  $\dot{U}_q^{\iota}(\mathfrak{sl}_2) = \dot{U}_q^{\iota}(\mathfrak{sl}_2)1_0 \oplus \dot{U}_q^{\iota}(\mathfrak{sl}_2)1_1$ .
- This has certain special bases.

# Change of basis

### Character formula (Brundan-Wang-Webster 2023, [BWW23a])

$$[L_n] = \sum_{k=0}^{\infty} (-1)^k \frac{q^{-k(1+2\delta_{n\neq t})}}{(1-q^{-4})(1-q^{-8})\cdots(1-q^{-4k})} [\overline{\Delta}_{n+2k}],$$

where  $[L_n]$  is the dual canonical basis and  $[\overline{\Delta}_n]$  is the dual PBW basis.

### The nil-Brauer algebra

Defined by [BWW23b] and denoted N $\mathcal{B}$ , depending on t = 0, 1, it is generated by



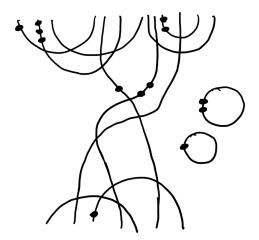
### The nil-Brauer algebra

Defined by [BWW23b] and denoted N $\mathcal{B}$ , depending on t = 0, 1, it is generated by

subject to conditions

One can then show the following are also satisfied

A typical example of an element of this algebra:



This is a circle of ideas including [Bru23], [BS21], [GRS23], etc..

This is a circle of ideas including [Bru23], [BS21], [GRS23], etc.. A minimal setup:

This is a circle of ideas including [Bru23], [BS21], [GRS23], etc.. A minimal setup:

• Let  $\Theta$  be a poset of "weights".

This is a circle of ideas including [Bru23], [BS21], [GRS23], etc.. A minimal setup:

- Let  $\Theta$  be a poset of "weights".
- Let  $e^{\theta}$  be a set of orthogonal homogeneous idempotents, labeled by  $\theta \in \Theta$ .

This is a circle of ideas including [Bru23], [BS21], [GRS23], etc.. A minimal setup:

- Let  $\Theta$  be a poset of "weights".
- Let  $e^{\theta}$  be a set of orthogonal homogeneous idempotents, labeled by  $\theta \in \Theta$ .

### Example

In NB, let 
$$\Theta = \mathbb{N}$$
 under  $0 < 1 < \cdots$ ,

This is a circle of ideas including [Bru23], [BS21], [GRS23], etc.. A minimal setup:

- Let  $\Theta$  be a poset of "weights".
- Let  $e^{\theta}$  be a set of orthogonal homogeneous idempotents, labeled by  $\theta \in \Theta$ .

### Example

In NB, let  $\Theta = \mathbb{N}$  under  $0 < 1 < \cdots$ , and let  $e^{\theta}$  be the idempotent corresponding to  $\theta$  strands:

Introduction Main results Key ideas Reconstruction Nilcohomology Koszul theory Future work In the below, let  $\varpi$  be the identity map.

#### Definition

A is "graded triangular-based" if there are (homogeneous) sets  $X(i,\alpha) \subseteq 1^i A 1^{\alpha}$ ,  $H(\alpha,\beta) \subseteq 1^{\alpha} A 1^{\beta}$ ,  $Y(\beta,j) \subseteq 1^{\beta} A 1^j$  such that

lacktriangle products of these elements in these sets give a basis for A, i.e.

$$\left\{xhy: (x,h,y) \in \bigcup_{i,j,\alpha,\beta} \mathbf{X}(i,\alpha) \times \mathbf{H}(\alpha,\beta) \times \mathbf{Y}(\beta,j)\right\}$$

forms a basis of A;

#### Definition

A is "graded triangular-based" if there are (homogeneous) sets  $X(i,\alpha) \subseteq 1^i A 1^{\alpha}$ ,  $H(\alpha,\beta) \subseteq 1^{\alpha} A 1^{\beta}$ ,  $Y(\beta,j) \subseteq 1^{\beta} A 1^j$  such that

 $\bullet$  products of these elements in these sets give a basis for A, i.e.

$$\left\{xhy:(x,h,y)\in\bigcup_{i,j,\alpha,\beta}\mathbf{X}(i,\alpha)\times\mathbf{H}(\alpha,\beta)\times\mathbf{Y}(\beta,j)\right\}$$

forms a basis of A;

$$2 X(\alpha, \alpha) = Y(\alpha, \alpha) = \{1^{\alpha}\};$$

#### Definition

A is "graded triangular-based" if there are (homogeneous) sets  $X(i,\alpha) \subseteq 1^i A 1^{\alpha}$ ,  $H(\alpha,\beta) \subseteq 1^{\alpha} A 1^{\beta}$ ,  $Y(\beta,j) \subseteq 1^{\beta} A 1^j$  such that

 $\bullet$  products of these elements in these sets give a basis for A, i.e.

$$\left\{xhy: (x,h,y) \in \bigcup_{i,j,\alpha,\beta} \mathbf{X}(i,\alpha) \times \mathbf{H}(\alpha,\beta) \times \mathbf{Y}(\beta,j)\right\}$$

forms a basis of A;

- $(\alpha, \alpha) = Y(\alpha, \alpha) = \{1^{\alpha}\};$

$$X(\alpha, \beta) \neq \emptyset \implies \varpi(\alpha) > \varpi(\beta),$$
  

$$H(\alpha, \beta) \neq \emptyset \implies \varpi(\alpha) = \varpi(\beta),$$
  

$$Y(\alpha, \beta) \neq \emptyset \implies \varpi(\alpha) < \varpi(\beta);$$

In the below, let  $\varpi$  be the identity map.

#### Definition

A is "graded triangular-based" if there are (homogeneous) sets  $X(i,\alpha) \subseteq 1^i A 1^{\alpha}$ ,  $H(\alpha,\beta) \subseteq 1^{\alpha} A 1^{\beta}$ ,  $Y(\beta,j) \subseteq 1^{\beta} A 1^{j}$  such that

lacktriangle products of these elements in these sets give a basis for A, i.e.

$$\left\{xhy:(x,h,y)\in\bigcup_{i,j,\alpha,\beta}\mathbf{X}(i,\alpha)\times\mathbf{H}(\alpha,\beta)\times\mathbf{Y}(\beta,j)\right\}$$

forms a basis of A;

- $(\alpha, \alpha) = Y(\alpha, \alpha) = \{1^{\alpha}\};$

$$X(\alpha, \beta) \neq \emptyset \implies \varpi(\alpha) > \varpi(\beta),$$
  

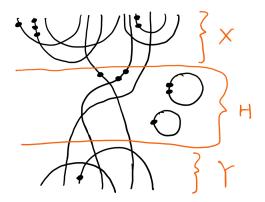
$$H(\alpha, \beta) \neq \emptyset \implies \varpi(\alpha) = \varpi(\beta),$$
  

$$Y(\alpha, \beta) \neq \emptyset \implies \varpi(\alpha) < \varpi(\beta);$$

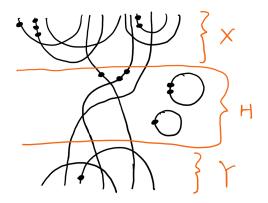
### Example

 $N\mathcal{B}$  is graded-triangular-based by setting  $\Theta = \mathbb{N}$ , with  $e^n$  being the idempotent for n strands.

### Same typical example from earlier:



Same typical example from earlier:



Remark:  $Y(\alpha, \alpha) = \{1^{\alpha}\}$  means the straight lines is a Y-diagram.

We can define

$$A^{\geq \theta} \coloneqq A / \langle e^{\phi} : \phi \not \geq \theta \rangle.$$

We can define

$$A^{\geq \theta} \coloneqq A / \langle e^{\phi} : \phi \not\geq \theta \rangle$$
.

The "Cartan algebras" are defined as

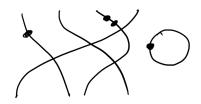
$$A^{\theta} = e^{\theta} A^{\geq \theta} e^{\theta}.$$

We can define

$$A^{\geq \theta} := A / \langle e^{\phi} : \phi \not\geq \theta \rangle.$$

The "Cartan algebras" are defined as

$$A^{\theta}=e^{\theta}A^{\geq\theta}e^{\theta}.$$

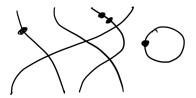


We can define

$$A^{\geq \theta} \coloneqq A / \langle e^{\phi} : \phi \not\geq \theta \rangle.$$

The "Cartan algebras" are defined as

$$A^{\theta} = e^{\theta} A^{\geq \theta} e^{\theta}.$$



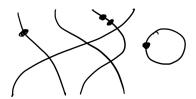
Let  $\Lambda_{\theta}$  label the simples  $L_{\lambda}(\theta)$  and projectives  $P_{\lambda}(\theta)$  of  $A^{\theta}$ , and let  $\Lambda = \bigsqcup_{\theta} \Lambda_{\theta}$ .

We can define

$$A^{\geq \theta} := A/\langle e^{\phi} : \phi \not\geq \theta \rangle.$$

The "Cartan algebras" are defined as

$$A^{\theta} = e^{\theta} A^{\geq \theta} e^{\theta}.$$



Let  $\Lambda_{\theta}$  label the simples  $L_{\lambda}(\theta)$  and projectives  $P_{\lambda}(\theta)$  of  $A^{\theta}$ , and let  $\Lambda = \bigsqcup_{\theta} \Lambda_{\theta}$ .

### Fact (Brundan 2023)

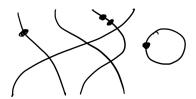
The simples of A are also labeled by  $\Lambda$ .

We can define

$$A^{\geq \theta} := A/\langle e^{\phi} : \phi \not\geq \theta \rangle.$$

The "Cartan algebras" are defined as

$$A^{\theta} = e^{\theta} A^{\geq \theta} e^{\theta}.$$



Let  $\Lambda_{\theta}$  label the simples  $L_{\lambda}(\theta)$  and projectives  $P_{\lambda}(\theta)$  of  $A^{\theta}$ , and let  $\Lambda = \bigsqcup_{\theta} \Lambda_{\theta}$ .

### Fact (Brundan 2023)

The simples of A are also labeled by  $\Lambda$ .

### For the nil-Brauer

### Example

Quotienting out by  $e^{\phi}: \phi < \theta$ :

### For the nil-Brauer

### Example

Quotienting out by  $e^{\phi}: \phi < \theta$ :

 $N\mathcal{B}^{\theta}$  is isomorphic to the nil-Hecke algebra on  $\theta$  strands (over the ring  $\Gamma$  of "Schur q-functions", isomorphic to the bubbles).

### For the nil-Brauer

### Example

Quotienting out by  $e^{\phi}: \phi < \theta$ :

 $N\mathcal{B}^{\theta}$  is isomorphic to the nil-Hecke algebra on  $\theta$  strands (over the ring  $\Gamma$  of "Schur q-functions", isomorphic to the bubbles).

This algebra has (up to grading shift) exactly one simple, so  $\Lambda = \Theta = \mathbb{N}$ .

### More generally

• This theory is able to handle much more, e.g. even when the idempotents corresponding to strands don't have an obvious ordering.

### Standardization/costandardization

• Given a module  $A^{\geq \theta} \odot M$ , we can consider the functor

$$\jmath^\theta \colon \operatorname{Mod} A^{\geq \theta} \longrightarrow \operatorname{Mod} A^\theta$$
 
$$M \longmapsto e^\theta M.$$

• Given a module  $A^{\geq \theta} \odot M$ , we can consider the functor

$$\jmath^\theta \colon \operatorname{Mod} A^{\geq \theta} \longrightarrow \operatorname{Mod} A^\theta$$
 
$$M \longmapsto e^\theta M.$$

• This lands in Mod  $A^{\theta}$ , since  $e^{\theta}A^{\geq \theta}e^{\theta} \odot e^{\theta}M$ .

• Given a module  $A^{\geq \theta} \odot M$ , we can consider the functor

$$\begin{split} \jmath^\theta \colon \operatorname{\mathsf{Mod}} A^{\geq \theta} &\longrightarrow \operatorname{\mathsf{Mod}} A^\theta \\ M &\longmapsto e^\theta M. \end{split}$$

- This lands in Mod  $A^{\theta}$ , since  $e^{\theta}A^{\geq \theta}e^{\theta} \odot e^{\theta}M$ .
- So the "Cartan" is acting on the "weight space".

• Given a module  $A^{\geq \theta} \odot M$ , we can consider the functor

$$\jmath^\theta \colon \operatorname{Mod} A^{\geq \theta} \longrightarrow \operatorname{Mod} A^\theta$$
 
$$M \longmapsto e^\theta M.$$

- This lands in Mod  $A^{\theta}$ , since  $e^{\theta}A^{\geq \theta}e^{\theta} \odot e^{\theta}M$ .
- So the "Cartan" is acting on the "weight space".
- This functor has a left and a right adjoint:

$$j_!^{\theta} \dashv j^{\theta} \dashv j_*^{\theta}$$
.

• Given a module  $A^{\geq \theta} \odot M$ , we can consider the functor

$$\label{eq:definition} \begin{split} \jmath^\theta \colon \operatorname{\mathsf{Mod}} A^{\geq \theta} & \longrightarrow \operatorname{\mathsf{Mod}} A^\theta \\ M & \longmapsto e^\theta M. \end{split}$$

- This lands in Mod  $A^{\theta}$ , since  $e^{\theta}A^{\geq \theta}e^{\theta} \odot e^{\theta}M$ .
- So the "Cartan" is acting on the "weight space".
- This functor has a left and a right adjoint:

$$j_!^{\theta} \dashv j^{\theta} \dashv j_*^{\theta}$$
.

$$\bullet \ \jmath_{!}^{\theta} = A^{\geq \theta} e^{\theta} \otimes_{A^{\theta}} \square.$$

• Given a module  $A^{\geq \theta} \odot M$ , we can consider the functor

$$j^{\theta} \colon \operatorname{\mathsf{Mod}} A^{\geq \theta} \longrightarrow \operatorname{\mathsf{Mod}} A^{\theta}$$
 
$$M \longmapsto e^{\theta} M.$$

- This lands in Mod  $A^{\theta}$ , since  $e^{\theta}A^{\geq \theta}e^{\theta} \odot e^{\theta}M$ .
- So the "Cartan" is acting on the "weight space".
- This functor has a left and a right adjoint:

$$j_!^{\theta} \dashv j^{\theta} \dashv j_*^{\theta}$$
.

 $\bullet \ \jmath_!^{\theta} = A^{\geq \theta} e^{\theta} \otimes_{A^{\theta}} \square.$ 

### Fact (Brundan 2023)

 $j_{!}^{\theta}$  and  $j_{*}^{\theta}$  are exact due to the triangular-based nature of A.

### "Vermas"

#### Definition

The "(proper) (co)standard modules" are defined by

 $\Delta_{\lambda} = j_!^{\theta} P_{\lambda}(\theta)$ 



The "(proper) (co)standard modules" are defined by



The "(proper) (co)standard modules" are defined by

| standard module (big Verma)          | $\Delta_{\lambda} = j_!^{\theta} P_{\lambda}(\theta)$            |
|--------------------------------------|------------------------------------------------------------------|
| proper standard module (small Verma) | $\overline{\Delta}_{\lambda} = j_!^{\theta} L_{\lambda}(\theta)$ |
| costandard module (big coVerma)      | $ abla_{\lambda} = \jmath_*^{\theta} Q_{\lambda}(\theta)$        |
|                                      |                                                                  |



The "(proper) (co)standard modules" are defined by

| standard module (big Verma)              | $\Delta_{\lambda} = j_!^{\theta} P_{\lambda}(\theta)$                 |
|------------------------------------------|-----------------------------------------------------------------------|
| proper standard module (small Verma)     | $\overline{\Delta}_{\lambda} = j_!^{\theta} L_{\lambda}(\theta)$      |
| costandard module (big coVerma)          | $\nabla_{\lambda} = \jmath_*^{\theta} Q_{\lambda}(\theta)$            |
| proper costandard module (small coVerma) | $\overline{\nabla}_{\lambda} = \jmath_*^{\theta} L_{\lambda}(\theta)$ |



The "(proper) (co)standard modules" are defined by

$$\begin{array}{|c|c|c|c|c|}\hline \text{standard module (big Verma)} & \Delta_{\lambda} = \jmath_{!}^{\theta} P_{\lambda}(\theta)\\ \\ \text{proper standard module (small Verma)} & \overline{\Delta}_{\lambda} = \jmath_{!}^{\theta} L_{\lambda}(\theta)\\ \\ \text{costandard module (big coVerma)} & \nabla_{\lambda} = \jmath_{*}^{\theta} Q_{\lambda}(\theta)\\ \\ \text{proper costandard module (small coVerma)} & \overline{\nabla}_{\lambda} = \jmath_{*}^{\theta} L_{\lambda}(\theta)\\ \hline \end{array}$$

These "(big/small) Verma modules" form an analogue of "highest-weight theory".

### Theorem (Brundan-Wang-Webster 2023)

There is an isomorphism between the Grothendieck group of  $N\mathcal{B}_t$  and (an integral form of)  $U_q^{\iota}(\mathfrak{sl}_2)_t$ , under which

### Theorem (Brundan-Wang-Webster 2023)

There is an isomorphism between the Grothendieck group of  $N\mathcal{B}_t$  and (an integral form of)  $U_q^{\iota}(\mathfrak{sl}_2)_t$ , under which

•  $P_{\lambda}$  goes to the canonical basis;

### Theorem (Brundan-Wang-Webster 2023)

There is an isomorphism between the Grothendieck group of  $N\mathcal{B}_t$  and (an integral form of)  $U_q^{\iota}(\mathfrak{sl}_2)_t$ , under which

- $P_{\lambda}$  goes to the canonical basis;
- $\Delta_{\lambda}$  goes to the PBW basis;

#### Theorem (Brundan-Wang-Webster 2023)

There is an isomorphism between the Grothendieck group of  $N\mathcal{B}_t$  and (an integral form of)  $U_a^{\iota}(\mathfrak{sl}_2)_t$ , under which

- $P_{\lambda}$  goes to the canonical basis;
- $\Delta_{\lambda}$  goes to the PBW basis;
- $\overline{\Delta}_{\lambda}$  goes to the dual PBW basis;

### Theorem (Brundan-Wang-Webster 2023)

There is an isomorphism between the Grothendieck group of  $N\mathcal{B}_t$  and (an integral form of)  $U_q^{\iota}(\mathfrak{sl}_2)_t$ , under which

- $P_{\lambda}$  goes to the canonical basis;
- $\Delta_{\lambda}$  goes to the PBW basis;
- $\overline{\Delta}_{\lambda}$  goes to the dual PBW basis;
- $L_{\lambda}$  goes to the dual canonical basis.

#### Theorem (Brundan-Wang-Webster 2023)

There is an isomorphism between the Grothendieck group of  $N\mathcal{B}_t$  and (an integral form of)  $U_q^{\iota}(\mathfrak{sl}_2)_t$ , under which

- $P_{\lambda}$  goes to the canonical basis;
- $\Delta_{\lambda}$  goes to the PBW basis;
- $\overline{\Delta}_{\lambda}$  goes to the dual PBW basis;
- $L_{\lambda}$  goes to the dual canonical basis.

So the formula

$$[L_n] = \sum_{k=0}^{\infty} (-1)^k \frac{q^{-k(1+2\delta_{n\neq t})}}{(1-q^{-4})(1-q^{-8})\cdots(1-q^{-4k})} [\overline{\Delta}_{n+2k}]$$

becomes a statement in the Grothendieck group of representations.

#### Theorem (Brundan-Wang-Webster 2023)

There is an isomorphism between the Grothendieck group of  $N\mathcal{B}_t$  and (an integral form of)  $U_a^{\iota}(\mathfrak{sl}_2)_t$ , under which

- $P_{\lambda}$  goes to the canonical basis;
- $\Delta_{\lambda}$  goes to the PBW basis;
- $\overline{\Delta}_{\lambda}$  goes to the dual PBW basis;
- $L_{\lambda}$  goes to the dual canonical basis.

So the formula

$$[L_n] = \sum_{k=0}^{\infty} (-1)^k \frac{q^{-k(1+2\delta_{n\neq t})}}{(1-q^{-4})(1-q^{-8})\cdots(1-q^{-4k})} [\overline{\Delta}_{n+2k}]$$

becomes a statement in the Grothendieck group of representations.

#### Question

Can this formula be further categorified into a resolution?

### The BGG resolution

### Theorem (Z. 2024)

At parameter t = 0, the 1-dimensional simple  $L_0$  has a BGG resolution

$$\cdots \to C^{-n}_{\mathrm{BGG}}(L_0) \longrightarrow C^{-(n-1)}_{\mathrm{BGG}}(L_0) \longrightarrow \cdots \longrightarrow C^0_{\mathrm{BGG}}(L_0) \longrightarrow L_0 \longrightarrow 0$$

### The BGG resolution

### Theorem (Z. 2024)

At parameter t = 0, the 1-dimensional simple  $L_0$  has a BGG resolution

$$\cdots \to C^{-n}_{\mathrm{BGG}}(L_0) \longrightarrow C^{-(n-1)}_{\mathrm{BGG}}(L_0) \longrightarrow \cdots \longrightarrow C^0_{\mathrm{BGG}}(L_0) \longrightarrow L_0 \longrightarrow 0$$

where the terms have character

$$\chi(C_{\mathrm{BGG}}^{-n}(L_0)) = \frac{q^{-n}}{(1 - q^{-4})(1 - q^{-8})\cdots(1 - q^{-4n})}\chi(\overline{\Delta}_{2n})$$

### The BGG resolution

#### Theorem (Z. 2024)

At parameter t = 0, the 1-dimensional simple  $L_0$  has a BGG resolution

$$\cdots \to C^{-n}_{\mathrm{BGG}}(L_0) \longrightarrow C^{-(n-1)}_{\mathrm{BGG}}(L_0) \longrightarrow \cdots \longrightarrow C^0_{\mathrm{BGG}}(L_0) \longrightarrow L_0 \longrightarrow 0$$

where the terms have character

$$\chi(C_{\mathrm{BGG}}^{-n}(L_0)) = \frac{q^{-n}}{(1 - q^{-4})(1 - q^{-8})\cdots(1 - q^{-4n})}\chi(\overline{\Delta}_{2n})$$

and admit filtrations  $C_{\text{BGG}}^{-n}(L_0) = F_{\text{BGG}}^0 \supset F_{\text{BGG}}^1 \supset \cdots$  such that

$$\operatorname{gr}^k C_{\operatorname{BGG}}^{-n}(L_0) = \overline{\Delta}_{2n} \otimes_{\mathbb{C}} q^{-n} \mathbb{C}[p_2, p_4, \cdots, p_{2n}]_{\deg_{\operatorname{sym}} = k},$$

where  $\deg_{\text{sym}} p_i = 1$ .

Introduction Main results Key ideas Reconstruction Nilcohomology Koszul theory Future work

### The BGG resolution

#### Theorem (Z. 2024)

At parameter t = 0, the 1-dimensional simple  $L_0$  has a BGG resolution

$$\cdots \to C^{-n}_{\mathrm{BGG}}(L_0) \longrightarrow C^{-(n-1)}_{\mathrm{BGG}}(L_0) \longrightarrow \cdots \longrightarrow C^{0}_{\mathrm{BGG}}(L_0) \longrightarrow L_0 \longrightarrow 0$$

where the terms have character

$$\chi(C_{\mathrm{BGG}}^{-n}(L_0)) = \frac{q^{-n}}{(1 - q^{-4})(1 - q^{-8})\cdots(1 - q^{-4n})}\chi(\overline{\Delta}_{2n})$$

and admit filtrations  $C_{\text{BGG}}^{-n}(L_0) = F_{\text{BGG}}^0 \supset F_{\text{BGG}}^1 \supset \cdots$  such that

$$\operatorname{gr}^k C_{\operatorname{BGG}}^{-n}(L_0) = \overline{\Delta}_{2n} \otimes_{\mathbb{C}} q^{-n} \mathbb{C}[p_2, p_4, \cdots, p_{2n}]_{\deg_{\operatorname{sym}} = k},$$

where  $\deg_{\text{sym}} p_i = 1$ .

For other simples, we instead have a spectral sequence categorifying the character formula.

### Theorem (Z. 2024)

There is a "lower-half subalgebra"  $N\mathcal{B}^-$  of  $N\mathcal{B}$  which is Koszul.

#### Theorem (Z. 2024)

There is a "lower-half subalgebra"  $N\mathcal{B}^-$  of  $N\mathcal{B}$  which is Koszul. This algebra is defined as

$$N\mathcal{B}^- = \bigoplus_{\psi \le \theta} e^{\psi} \mathbb{C} Y e^{\theta}.$$

#### Theorem (Z. 2024)

There is a "lower-half subalgebra"  $N\mathcal{B}^-$  of  $N\mathcal{B}$  which is Koszul. This algebra is defined as

$$N\mathcal{B}^- = \bigoplus_{\psi \le \theta} e^{\psi} \mathbb{C} Y e^{\theta}.$$

Here the Koszul grading is coming from the weight theory – it is given by the number of caps.

#### Theorem (Z. 2024)

There is a "lower-half subalgebra"  $N\mathcal{B}^-$  of  $N\mathcal{B}$  which is Koszul. This algebra is defined as

$$N\mathcal{B}^- = \bigoplus_{\psi \le \theta} e^{\psi} \mathbb{C} Y e^{\theta}.$$

Here the Koszul grading is coming from the weight theory – it is given by the number of caps.

This theorem is key to proving the BGG resolution.

• First key idea: "weight theory"

● First key idea: "weight theory" — stratification of the module category — "filtration" of the identity functor — spectral sequence converging to any object.

- First key idea: "weight theory" stratification of the module category — "filtration" of the identity functor — spectral sequence converging to any object.
  - In particular, we can apply this to simple objects.

- First key idea: "weight theory" stratification of the module category — "filtration" of the identity functor — spectral sequence converging to any object.
  - In particular, we can apply this to simple objects.
  - Terms of this spectral sequence capture homological information, in the form of certain Ext groups.

- First key idea: "weight theory" stratification of the module category "filtration" of the identity functor spectral sequence converging to any object.
  - In particular, we can apply this to simple objects.
  - Terms of this spectral sequence capture homological information, in the form of certain Ext groups.
  - Concentration of these Ext groups (cf. "Kostant modules") imply a "BGG resolution".

- First key idea: "weight theory" → stratification of the module category → "filtration" of the identity functor → spectral sequence converging to any object.
  - In particular, we can apply this to simple objects.
  - Terms of this spectral sequence capture homological information, in the form of certain Ext groups.
  - Concentration of these Ext groups (cf. "Kostant modules") imply a "BGG resolution".
  - $\bullet$  This idea is due to Gaitsgory and Ayala-Mazel-Gee-Rozenblyum ([AMGR22]).

- First key idea: "weight theory" → stratification of the module category → "filtration" of the identity functor → spectral sequence converging to any object.
  - In particular, we can apply this to simple objects.
  - Terms of this spectral sequence capture homological information, in the form of certain Ext groups.
  - Concentration of these Ext groups (cf. "Kostant modules") imply a "BGG resolution".
  - This idea is due to Gaitsgory and Ayala-Mazel-Gee-Rozenblyum ([AMGR22]).
- Second key idea: This homological information can be computed using Koszul methods.

- First key idea: "weight theory" → stratification of the module category → "filtration" of the identity functor → spectral sequence converging to any object.
  - In particular, we can apply this to simple objects.
  - Terms of this spectral sequence capture homological information, in the form of certain Ext groups.
  - Concentration of these Ext groups (cf. "Kostant modules") imply a "BGG resolution".
  - This idea is due to Gaitsgory and Ayala-Mazel-Gee-Rozenblyum ([AMGR22]).
- Second key idea: This homological information can be computed using Koszul methods.

### Slogan

Koszulity of half of A is intimately connected to BGG resolutions.

- First key idea: "weight theory" → stratification of the module category → "filtration" of the identity functor → spectral sequence converging to any object.
  - In particular, we can apply this to simple objects.
  - Terms of this spectral sequence capture homological information, in the form of certain Ext groups.
  - Concentration of these Ext groups (cf. "Kostant modules") imply a "BGG resolution".
  - This idea is due to Gaitsgory and Ayala-Mazel-Gee-Rozenblyum ([AMGR22]).
- Second key idea: This homological information can be computed using Koszul methods.

### Slogan

Koszulity of half of A is intimately connected to BGG resolutions.

• Then we can use a naive resolution to compute these Ext groups.

## Key ideas

- First key idea: "weight theory" → stratification of the module category → "filtration" of the identity functor → spectral sequence converging to any object.
  - In particular, we can apply this to simple objects.
  - Terms of this spectral sequence capture homological information, in the form of certain Ext groups.
  - Concentration of these Ext groups (cf. "Kostant modules") imply a "BGG resolution".
  - This idea is due to Gaitsgory and Ayala-Mazel-Gee-Rozenblyum ([AMGR22]).
- Second key idea: This homological information can be computed using Koszul methods.

#### Slogan

Koszulity of half of A is intimately connected to BGG resolutions.

- Then we can use a naive resolution to compute these Ext groups.
- The spectral sequence is a resolution for modules which are Koszul over half of A.

• These ideas are not specific to nil-Brauer.

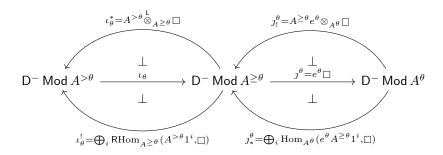
- These ideas are not specific to nil-Brauer.
- We can use these tools to categorify formulae regarding Chebyshev and Hermite polynomials, using the algebras defined by Khovanov-Sazdanovic.

#### Algebraic recollement

• The stratification will have recollements on each level. Details unimportant.

#### Algebraic recollement

- The stratification will have recollements on each level. Details unimportant.
- By the D Mod  $A/AeA \longrightarrow D \operatorname{Mod} A \longrightarrow D \operatorname{Mod} eAe$  setup of [CPS88], set  $A = A^{\geq \theta}$  and  $e = e^{\theta}$  to get:



• Let  $\Theta$  be sufficiently nice.

- Let  $\Theta$  be sufficiently nice.
- There is a spectral sequence (functorial in the input  $\Box$ )

$$E_1^{p,q} = \bigoplus_{\ell(\theta) = -p} \Delta(\theta) \otimes_{A^{\theta}} \operatorname{Ext}_A^{-(p+q)}(\Delta(\theta), \square^{\dagger})^* \implies E_{\infty}^{p,q} = \operatorname{gr}^{-p} H^{p+q}(\square),$$

where 
$$\Delta(\theta) := \bigoplus_{\lambda \in \theta} \Delta_{\lambda}^{\overline{l_{\lambda}(\theta)}} = A^{\geq \theta} e^{\theta}$$
.

- Let  $\Theta$  be sufficiently nice.
- There is a spectral sequence (functorial in the input  $\Box$ )

$$E_1^{p,q} = \bigoplus_{\ell(\theta) = -p} \Delta(\theta) \otimes_{A^{\theta}} \operatorname{Ext}_A^{-(p+q)}(\Delta(\theta), \square^{\dagger})^* \implies E_{\infty}^{p,q} = \operatorname{gr}^{-p} H^{p+q}(\square),$$

where 
$$\Delta(\theta) := \bigoplus_{\lambda \in \theta} \Delta_{\lambda}^{\overline{l_{\lambda}(\theta)}} = A^{\geq \theta} e^{\theta}$$
.  $\deg d_r = (r, 1 - r)$ :

$$E_1$$

$$E_{\infty}$$

$$E_{\infty}$$

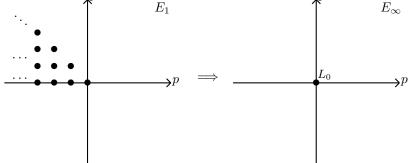
$$D_{\infty}$$

$$D_{\infty}$$

- Let  $\Theta$  be sufficiently nice.
- There is a spectral sequence (functorial in the input □)

$$E_1^{p,q} = \bigoplus_{\ell(\theta) = -p} \Delta(\theta) \otimes_{A^{\theta}} \operatorname{Ext}_A^{-(p+q)}(\Delta(\theta), \square^{\dagger})^* \implies E_{\infty}^{p,q} = \operatorname{gr}^{-p} H^{p+q}(\square),$$

where 
$$\Delta(\theta) := \bigoplus_{\lambda \in \theta} \Delta_{\lambda}^{\overline{l_{\lambda}(\theta)}} = A^{\geq \theta} e^{\theta}$$
.  $\deg d_r = (r, 1 - r)$ :



Remark: Cf. Koszul duality.

• To obtain a resolution, we need the Ext groups to be concentrated in certain degrees.

- To obtain a resolution, we need the Ext groups to be concentrated in certain degrees.
- Idea: Koszul objects have good Ext concentration properties.

- To obtain a resolution, we need the Ext groups to be concentrated in certain degrees.
- Idea: Koszul objects have good Ext concentration properties.

#### Definition

A quadratic graded algebra A ( $A_0 = \mathbb{k}$ ) is "Koszul" if  $\operatorname{Ext}_A(\mathbb{k}, \mathbb{k})$  in nonzero only when the homological degree agrees with the Koszul degree.

• It is classical that  $L_0$  has concentrated Ext groups:

• It is classical that  $L_0$  has concentrated Ext groups:

$$\operatorname{Ext}^{0}(\Delta_{0}, L_{0}) = \mathbb{C}, \qquad \operatorname{Ext}^{0}(\Delta_{-2}, L_{0}) = 0$$
$$\operatorname{Ext}^{1}(\Delta_{0}, L_{0}) = 0, \qquad \operatorname{Ext}^{1}(\Delta_{-2}, L_{0}) = \mathbb{C}.$$

• It is classical that  $L_0$  has concentrated Ext groups:

$$\operatorname{Ext}^{0}(\Delta_{0}, L_{0}) = \mathbb{C}, \qquad \operatorname{Ext}^{0}(\Delta_{-2}, L_{0}) = 0$$

$$\operatorname{Ext}^{1}(\Delta_{0}, L_{0}) = 0, \qquad \operatorname{Ext}^{1}(\Delta_{-2}, L_{0}) = \mathbb{C}.$$

 Then the spectral sequence above exactly recovers the BGG resolution.

• It is classical that  $L_0$  has concentrated Ext groups:

$$\operatorname{Ext}^{0}(\Delta_{0}, L_{0}) = \mathbb{C}, \qquad \operatorname{Ext}^{0}(\Delta_{-2}, L_{0}) = 0$$

$$\operatorname{Ext}^{1}(\Delta_{0}, L_{0}) = 0, \qquad \operatorname{Ext}^{1}(\Delta_{-2}, L_{0}) = \mathbb{C}.$$

- Then the spectral sequence above exactly recovers the BGG resolution.
- Remark: It can also recover the standard filtration of projectives.

### The algebra controlling this

• Recall that the principal block of  $\mathcal{O}(\mathfrak{sl}_2)$  is Morita equivalent to the 5-dimensional algebra  $A_{\mathfrak{sl}_2}$  spanned by



### The algebra controlling this

• Recall that the principal block of  $\mathcal{O}(\mathfrak{sl}_2)$  is Morita equivalent to the 5-dimensional algebra  $A_{\mathfrak{sl}_2}$  spanned by



• The subalgebra  $A_{\mathfrak{sl}_2}^-$  of this spanned by



is Koszul.

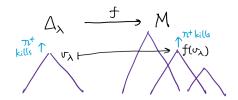
• We wish to mimic the story of Lie algebra cohomology  $H^{\bullet}(\mathfrak{n}^+:\Box)$ .

- We wish to mimic the story of Lie algebra cohomology  $H^{\bullet}(\mathfrak{n}^+:\Box)$ .
- Recall

$$\mathsf{R}\mathrm{Hom}_{\mathcal{O}}(\Delta_{\lambda},\square) = \mathsf{R}\mathrm{Hom}_{\mathfrak{b}^+}(\mathbb{C}_{\lambda},\square) = (\mathsf{R}(\square^{\mathfrak{n}^+}))^{\lambda} =: H^{\bullet}(\mathfrak{n}^+:\square)^{\lambda}.$$

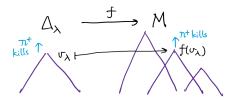
- We wish to mimic the story of Lie algebra cohomology  $H^{\bullet}(\mathfrak{n}^+:\Box)$ .
- Recall

$$\mathsf{RHom}_{\mathcal{O}}(\Delta_{\lambda},\square) = \mathsf{RHom}_{\mathfrak{b}^+}(\mathbb{C}_{\lambda},\square) = (\mathsf{R}(\square^{\mathfrak{n}^+}))^{\lambda} \eqqcolon H^{\bullet}(\mathfrak{n}^+:\square)^{\lambda}.$$



- We wish to mimic the story of Lie algebra cohomology  $H^{\bullet}(\mathfrak{n}^+:\Box)$ .
- Recall

$$\mathsf{RHom}_{\mathcal{O}}(\Delta_{\lambda},\square) = \mathsf{RHom}_{\mathfrak{b}^+}(\mathbb{C}_{\lambda},\square) = (\mathsf{R}(\square^{\mathfrak{n}^+}))^{\lambda} \eqqcolon H^{\bullet}(\mathfrak{n}^+:\square)^{\lambda}.$$



• This can be computed with the Chevalley-Eilenberg complex, which is finite in length.

• To this end, try to define

$$A^{-} := \bigoplus_{\psi < \theta} e^{\psi} \mathbb{C} \mathbf{Y} e^{\theta} = \mathbb{K} \oplus I,$$

where 
$$\mathbb{K} := \bigoplus_{\theta} \mathbb{k} e^{\theta}$$
,  $I = \bigoplus_{\psi < \theta} e^{\psi} \mathbb{C} \mathbf{Y}_{+} e^{\theta}$ .

• To this end, try to define

$$A^{-} := \bigoplus_{\psi < \theta} e^{\psi} \mathbb{C} \mathbf{Y} e^{\theta} = \mathbb{K} \oplus I,$$

where 
$$\mathbb{K} := \bigoplus_{\theta} \mathbb{k} e^{\theta}$$
,  $I = \bigoplus_{\psi < \theta} e^{\psi} \mathbb{C} Y_{+} e^{\theta}$ .

• Subalgebra-ness needs to be checked.

• To this end, try to define

$$A^- := \bigoplus_{\psi < \theta} e^{\psi} \mathbb{C} Y e^{\theta} = \mathbb{K} \oplus I,$$

where 
$$\mathbb{K} := \bigoplus_{\theta} \mathbb{k} e^{\theta}$$
,  $I = \bigoplus_{\psi < \theta} e^{\psi} \mathbb{C} Y_{+} e^{\theta}$ .

• Subalgebra-ness needs to be checked. This is true for nil-Brauer.

• To this end, try to define

$$A^- := \bigoplus_{\psi < \theta} e^{\psi} \mathbb{C} Y e^{\theta} = \mathbb{K} \oplus I,$$

where 
$$\mathbb{K} := \bigoplus_{\theta} \mathbb{k} e^{\theta}$$
,  $I = \bigoplus_{\psi < \theta} e^{\psi} \mathbb{C} Y_{+} e^{\theta}$ .

- Subalgebra-ness needs to be checked. This is true for nil-Brauer.
- Note

$$\operatorname{Hom}_A(A^{\geq \theta}e^{\theta}, \square) = \operatorname{Hom}_{A^-}(\Bbbk e^{\theta}, \square).$$

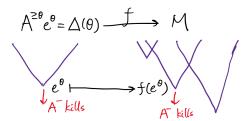
• To this end, try to define

$$A^{-} := \bigoplus_{\psi < \theta} e^{\psi} \mathbb{C} \mathbf{Y} e^{\theta} = \mathbb{K} \oplus I,$$

where  $\mathbb{K} := \bigoplus_{\theta} \mathbb{k} e^{\theta}$ ,  $I = \bigoplus_{\psi < \theta} e^{\psi} \mathbb{C} Y_{+} e^{\theta}$ .

- Subalgebra-ness needs to be checked. This is true for nil-Brauer.
- Note

$$\operatorname{Hom}_A(A^{\geq \theta}e^{\theta}, \square) = \operatorname{Hom}_{A^-}(\Bbbk e^{\theta}, \square).$$



• This can be identified with  $e^{\theta}M^{A^-}=\{v\in M^{\theta}:I\cdot v=0\}.$ 

• This can be identified with  $e^{\theta}M^{A^{-}} = \{v \in M^{\theta} : I \cdot v = 0\}$ . Its derived functor deserves to be called

$$H^{\bullet}(A^{-}:\Box)^{\theta} = \mathsf{RHom}_{A}(A^{\geq \theta}e^{\theta},\Box).$$

• This can be identified with  $e^{\theta}M^{A^{-}} = \{v \in M^{\theta} : I \cdot v = 0\}$ . Its derived functor deserves to be called

$$H^{\bullet}(A^{-}:\Box)^{\theta} = \mathsf{RHom}_{A}(A^{\geq \theta}e^{\theta},\Box).$$

• This can be computed with the complex

$$\cdots \to A^- \otimes I^{\otimes k} e^\theta \to \cdots \to A^- \otimes I \otimes I e^\theta \to A^- \otimes I e^\theta \to A^- e^\theta \to \mathbb{k} e^\theta.$$

• This can be identified with  $e^{\theta}M^{A^{-}} = \{v \in M^{\theta} : I \cdot v = 0\}$ . Its derived functor deserves to be called

$$H^{\bullet}(A^{-}: \square)^{\theta} = \mathsf{RHom}_{A}(A^{\geq \theta}e^{\theta}, \square).$$

• This can be computed with the complex

$$\cdots \to A^- \otimes I^{\otimes k} e^{\theta} \to \cdots \to A^- \otimes I \otimes I e^{\theta} \to A^- \otimes I e^{\theta} \to A^- e^{\theta} \to \mathbb{k} e^{\theta}.$$

• Remark: This can be made more uniform by defining

$$H^{\bullet}(A^{-}: \square) \coloneqq \mathsf{RHom}_{A^{-}}(\mathbb{K}, \square).$$

• In particular, for nil-Brauer, the trivial module  $(t = 0) L_0$  is  $ke^0$ .

- In particular, for nil-Brauer, the trivial module  $(t = 0) L_0$  is  $ke^0$ .
- The homological information we need is then

$$\operatorname{Ext}_A(A^{\geq \theta}e^{\theta}, L_0) = \operatorname{Ext}_{A^-}(\mathbb{k}e^{\theta}, \mathbb{k}e^0).$$

- In particular, for nil-Brauer, the trivial module  $(t = 0) L_0$  is  $ke^0$ .
- The homological information we need is then

$$\operatorname{Ext}_A(A^{\geq \theta}e^{\theta}, L_0) = \operatorname{Ext}_{A^-}(\mathbb{k}e^{\theta}, \mathbb{k}e^{0}).$$

• This is subsumed by

$$H^{\bullet}(A^{-}:\mathbb{K}) = \mathsf{RHom}_{A^{-}}(\mathbb{K},\mathbb{K}).$$

- In particular, for nil-Brauer, the trivial module  $(t = 0) L_0$  is  $\mathbb{k}e^0$ .
- The homological information we need is then

$$\operatorname{Ext}_A(A^{\geq \theta}e^{\theta}, L_0) = \operatorname{Ext}_{A^-}(\mathbb{k}e^{\theta}, \mathbb{k}e^0).$$

• This is subsumed by

$$H^{\bullet}(A^{-}:\mathbb{K}) = \mathsf{RHom}_{A^{-}}(\mathbb{K},\mathbb{K}).$$

• Hence we wish to show  $N\mathcal{B}^-$  is Koszul.

Introduction Main results Key ideas Reconstruction Nilcohomology Koszul theory Future work

#### $N\mathcal{B}^-$ is Koszul

The proof is technical.

#### $N\mathcal{B}^-$ is Koszul

The proof is technical.

Somehow the fact  $N\mathcal{B}^-$  is Koszul boils down to algebras like

$$\mathbb{C}\langle x_1, x_2, x_3 \rangle / \langle x_i^2 = 0, \ x_1 x_3 = x_3 x_1, \ x_2 x_3 = x_3 x_2, \ x_2 x_1 = 0 \rangle$$

being Koszul.

#### $N\mathcal{B}^-$ is Koszul

The proof is technical.

Somehow the fact  $N\mathcal{B}^-$  is Koszul boils down to algebras like

$$\mathbb{C}\langle x_1, x_2, x_3 \rangle \middle/ \langle x_i^2 = 0, \ x_1 x_3 = x_3 x_1, \ x_2 x_3 = x_3 x_2, \ x_2 x_1 = 0 \rangle$$

being Koszul.



#### Back to nilcohomology

• We can then use the naive complex to compute the dimensions of these Ext groups.

## Back to nilcohomology

• We can then use the naive complex to compute the dimensions of these Ext groups.

#### Theorem

Let t = 0 and  $\theta = 2n$ . Then the dimension of the Ext groups are

$$\dim_q \operatorname{Ext}_{N\mathcal{B}}^n(\Delta(\theta), L_0)^* = \frac{q^{-n}[2n]!}{(1 - q^{-4}) \cdots (1 - q^{-4n})}$$

## Back to nilcohomology

• We can then use the naive complex to compute the dimensions of these Ext groups.

#### Theorem

Let t=0 and  $\theta=2n$ . Then the dimension of the Ext groups are

$$\dim_q \operatorname{Ext}_{N\mathcal{B}}^n(\Delta(\theta), L_0)^* = \frac{q^{-n}[2n]!}{(1 - q^{-4}) \cdots (1 - q^{-4n})}$$

Moreover, the  $N\mathcal{B}^{\theta}$ -module  $\operatorname{Ext}_{N\mathcal{B}}^{n}(\Delta(\theta), L_{0})^{*}$  is isomorphic to a quotient of the polynomial ring,

$$\operatorname{Ext}_{\mathrm{N}\mathcal{B}}^{n}(\Delta(\theta), L_{0})^{*} \cong \mathbb{C}[X_{1}, \cdots, X_{\theta}]/\langle p_{1}, p_{3}, \cdots, p_{2n-1}\rangle.$$

This proves the theorem:

#### Theorem (Z. 2024)

At parameter t = 0, the 1-dimensional simple  $L_0$  has a BGG resolution

$$\cdots \to C^{-n}_{\mathrm{BGG}}(L_0) \longrightarrow C^{-(n-1)}_{\mathrm{BGG}}(L_0) \longrightarrow \cdots \longrightarrow C^0_{\mathrm{BGG}}(L_0) \longrightarrow L_0 \longrightarrow 0$$

where the terms have character

$$\chi(C_{\mathrm{BGG}}^{-n}(L_0)) = \frac{q^{-n}}{(1 - q^{-4})(1 - q^{-8})\cdots(1 - q^{-4n})}\chi(\overline{\Delta}_{2n})$$

and admit filtrations  $C_{\text{BGG}}^{-n}(L_0) = F_{\text{BGG}}^0 \supset F_{\text{BGG}}^1 \supset \cdots$  such that

$$\operatorname{gr}^k C_{\operatorname{BGG}}^{-n}(L_0) = \overline{\Delta}_{2n} \otimes_{\mathbb{C}} q^{-n} \mathbb{C}[p_2, p_4, \cdots, p_{2n}]_{\deg_{\operatorname{sym}} = k},$$

where  $\deg_{\text{sym}} p_i = 1$ .

• Lauda's  $\mathcal{U}_q(\mathfrak{sl}_2)$  is triangular-based.

- Lauda's  $\mathcal{U}_q(\mathfrak{sl}_2)$  is triangular-based.
- However, it does not have a subalgebra like  $\mathcal{U}_q(\mathfrak{sl}_2)^-$ .

- Lauda's  $\mathcal{U}_q(\mathfrak{sl}_2)$  is triangular-based.
- However, it does not have a subalgebra like  $\mathcal{U}_q(\mathfrak{sl}_2)^-$ .
- Instead, one needs to work with a bigger object  $\mathcal{U}_q(\mathfrak{sl}_2)^{\flat}$ , which actually is a subalgebra.

- Lauda's  $\mathcal{U}_q(\mathfrak{sl}_2)$  is triangular-based.
- However, it does not have a subalgebra like  $\mathcal{U}_q(\mathfrak{sl}_2)^-$ .
- Instead, one needs to work with a bigger object  $\mathcal{U}_q(\mathfrak{sl}_2)^{\flat}$ , which actually is a subalgebra.
- Categorification: projectives categorify Lusztig's canonical basis.

- Lauda's  $\mathcal{U}_q(\mathfrak{sl}_2)$  is triangular-based.
- However, it does not have a subalgebra like  $\mathcal{U}_q(\mathfrak{sl}_2)^-$ .
- Instead, one needs to work with a bigger object  $\mathcal{U}_q(\mathfrak{sl}_2)^{\flat}$ , which actually is a subalgebra.
- Categorification: projectives categorify Lusztig's canonical basis.

#### Question

What do the standard modules correspond to?

• The Jacobi-Trudi determinant identity expressed (skew) Schur functions as a determinant of h's:

$$s_{\lambda/\mu} = \det(h_{(\lambda_i - i) - (\mu_j - j)})_{i,j}.$$

 The Jacobi-Trudi determinant identity expressed (skew) Schur functions as a determinant of h's:

$$s_{\lambda/\mu} = \det(h_{(\lambda_i - i) - (\mu_j - j)})_{i,j}.$$

• In relation to  $S_n$ -theory, the Schur functions correspond to simples (Spechts), while the h's correspond to permutation modules.

 The Jacobi-Trudi determinant identity expressed (skew) Schur functions as a determinant of h's:

$$s_{\lambda/\mu} = \det(h_{(\lambda_i - i) - (\mu_j - j)})_{i,j}.$$

- In relation to  $S_n$ -theory, the Schur functions correspond to simples (Spechts), while the h's correspond to permutation modules.
- Various other observations.

 The Jacobi-Trudi determinant identity expressed (skew) Schur functions as a determinant of h's:

$$s_{\lambda/\mu} = \det(h_{(\lambda_i - i) - (\mu_j - j)})_{i,j}.$$

- In relation to  $S_n$ -theory, the Schur functions correspond to simples (Spechts), while the h's correspond to permutation modules.
- Various other observations.

#### Question

Is there a way to witness this as a BGG/highest weight phenomenon?

• Consider (a block of) the degenerate affine Hecke algebra  $\widehat{\mathcal{H}}_n$ .

- Consider (a block of) the degenerate affine Hecke algebra  $\widehat{\mathcal{H}}_n$ .
- As just a diagrammatic algebra, this has no obvious triangular basis.

- Consider (a block of) the degenerate affine Hecke algebra  $\widehat{\mathcal{H}}_n$ .
- As just a diagrammatic algebra, this has no obvious triangular basis.
- However, we can use Young idempotents to stratify the algebra or module category.

- Consider (a block of) the degenerate affine Hecke algebra  $\widehat{\mathcal{H}}_n$ .
- As just a diagrammatic algebra, this has no obvious triangular basis.
- However, we can use Young idempotents to stratify the algebra or module category.
- We can try to define an analog of  $A^-$ , which will be Koszul.

- Consider (a block of) the degenerate affine Hecke algebra  $\widehat{\mathcal{H}}_n$ .
- As just a diagrammatic algebra, this has no obvious triangular basis.
- However, we can use Young idempotents to stratify the algebra or module category.
- We can try to define an analog of  $A^-$ , which will be Koszul.
- The resulting nilcohomology concentration result will give a BGG resolution categorifying Jacobi-Trudi.

- Consider (a block of) the degenerate affine Hecke algebra  $\widehat{\mathcal{H}}_n$ .
- As just a diagrammatic algebra, this has no obvious triangular basis.
- However, we can use Young idempotents to stratify the algebra or module category.
- We can try to define an analog of  $A^-$ , which will be Koszul.
- The resulting nilcohomology concentration result will give a BGG resolution categorifying Jacobi-Trudi.
- This approach has the benefit of realizing this phenomenon as a lowest-weight theory; for example, we can realize the permutation module as an actual standardization functor  $j_1^{\lambda}$ .

#### Stratifications within stratifications

• The affine oriented Brauer category is triangular-based.

#### Stratifications within stratifications

- The affine oriented Brauer category is triangular-based.
- However, this structure alone does not utilize the obvious ordering on the simples of each Cartan.

#### Stratifications within stratifications

- The affine oriented Brauer category is triangular-based.
- However, this structure alone does not utilize the obvious ordering on the simples of each Cartan.
- By using the stratification of  $\widehat{\mathcal{H}}_n$  above, we should obtain finer stratifications.

## Thank you!

Thank you for coming to my talk! Questions

#### References



David Ayala, Aaron Mazel-Gee, and Nick Rozenblyum.

Stratified noncommutative geometry, 2022. arXiv:1910.14602.



Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel.

Koszul duality patterns in representation theory.

Journal of the American Mathematical Society, 9(2):473-527, 1996.



Jonathan Brundan.

Graded triangular bases, 2023.



Jonathan Brundan and Catharina Stroppel.

Semi-infinite highest weight categories, 2021. arXiv:1808.08022.



Jonathan Brundan, Weiqiang Wang, and Ben Webster.

Nil-Brauer categorifies the split i-quantum group of rank one, 2023. arXiv:2305.05877.



Jonathan Brundan, Weiqiang Wang, and Ben Webster.

The nil-Brauer category, 2023. arXiv:2305.03876.



E. Cline, B. Parshall, and L. Scott.

Finite dimensional algebras and highest weight categories.

Journal für die reine und angewandte Mathematik, 391:85-99, 1988.



Mengmeng Gao, Hebing Rui, and Linliang Song.

Representations of weakly triangular categories.

Journal of Algebra, 614:481-534, 2023. arXiv:2012.02945.

We are using the *inverse* Koszul duality of [BGS96], and we flip the axes and swap the roles of A and A!.

We are using the *inverse* Koszul duality of [BGS96], and we flip the axes and swap the roles of A and A!.

$$\mathcal{K}_{A^+} \colon \mathsf{D}^{\setminus} \operatorname{\mathsf{Mod}} A^+ \longrightarrow \mathsf{D}^{\succeq} \operatorname{\mathsf{Mod}} A^{+,!},$$

We are using the *inverse* Koszul duality of [BGS96], and we flip the axes and swap the roles of A and A!.

$$\mathcal{K}_{A^+} \colon \mathsf{D}^{\setminus} \operatorname{\mathsf{Mod}} A^+ \longrightarrow \mathsf{D}^{\setminus} \operatorname{\mathsf{Mod}} A^{+,!},$$

where

$$\mathcal{K}_{A^+} = \operatorname{sh}(\mathbb{K} \overset{\mathsf{L}}{\otimes}_{A^+} \operatorname{refl} \square) = \operatorname{sh} \mathsf{RHom}_{A^-}(\mathbb{K}, \operatorname{refl} \square^\dagger)^*.$$

We are using the *inverse* Koszul duality of [BGS96], and we flip the axes and swap the roles of A and A!.

$$\mathcal{K}_{A^+} \colon \mathsf{D}^{\setminus} \mathsf{Mod}\, A^+ \longrightarrow \mathsf{D}^{\triangle} \mathsf{Mod}\, A^{+,!},$$

where

$$\mathcal{K}_{A^+} = \operatorname{sh}(\mathbb{K} \overset{\mathsf{L}}{\otimes}_{A^+} \operatorname{refl} \square) = \operatorname{sh} \mathsf{RHom}_{A^-}(\mathbb{K}, \operatorname{refl} \square^\dagger)^*.$$

Here sh M = M[n] if M is concentrated in Koszul degree n, and  $\operatorname{refl}(M)_j = M_{-j}$ .

We are using the *inverse* Koszul duality of [BGS96], and we flip the axes and swap the roles of A and A!.

$$\mathcal{K}_{A^+} \colon \mathsf{D}^{\setminus} \operatorname{\mathsf{Mod}} A^+ \longrightarrow \mathsf{D}^{\perp} \operatorname{\mathsf{Mod}} A^{+,!},$$

where

$$\mathcal{K}_{A^+} = \operatorname{sh}(\mathbb{K} \overset{\mathsf{L}}{\otimes}_{A^+} \operatorname{refl} \square) = \operatorname{sh} \mathsf{RHom}_{A^-}(\mathbb{K}, \operatorname{refl} \square^\dagger)^*.$$

Here sh M = M[n] if M is concentrated in Koszul degree n, and  $refl(M)_j = M_{-j}$ .

Then the spectral sequence looks like

$$\Delta \otimes_{A^{\circ}} \mathcal{K}_{A^{+}}(\square).$$